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Some periodic behaviour exhibited by a modi"ed van der Pol}Du$ng electronic
oscillator near a degenerate Hopf}pitchfork bifurcation have been studied. Numerical
continuation of these periodic orbits leads to the appearance of interesting phenomena.
After varying one of the characteristics of the oscillator, oscillation-sliding between two
periodic reH gimes is detected. In the region where oscillation-sliding is present, quasiperiodic
oscillations (invariant torus), breakdown of the torus and the corresponding resonant
periodic orbits are also found.
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1. INTRODUCTION

Electronic analogies have played an important role in the development of theories of
dynamical systems. The analogies have formed the basis of theoretical problems, whose
analysis has provided evidence of non-trivial behaviour.

It is possible to establish an analogy between some electronic and mechanical
magnitudes. This analogy allows new dynamical results to be obtained from electronic
systems (that sometimes are easier to handle/measure than mechanical ones) which are also
present in mechanical systems. In fact, it has been shown by van der Pol that it is possible to
hear harmonics and even the chaos.

In the present paper an interesting phenomenon, named oscillation-sliding, is shown. It
appears in a modi"ed van der Pol}Du$ng electronic oscillator. The detection of
oscillation-sliding is made possible by taking advantage of some analytical results about
a degenerate Hopf-pitchfork bifurcation (see, for instance, references [1, 2]).

The paper is organized as follows. In section 2, the electronic model under consideration is
described. Section 3 is devoted to the explanation of the analytical results that provide zones
in the parameter space where complex dynamical behaviour may be expected. The
description of oscillation-sliding appears in section 4. Finally, some conclusions are included.

2. THE MODEL

The electronic oscillator considered in this work is shown schematically in Figure 1.
It is composed of an RC-circuit (conductance G

1
and capacity C

0
) and a parallel
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Figure 1. Scheme of the electronic oscillator.
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RC¸-circuit (conductance G
3
, inductance ¸ and capacity C), coupled by means of a

conductance G
2
.

Taking the voltages on the capacitors and the current across the inductance as variables,
the following equations are obtained:
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The current}voltage characteristics of conductance G
j
, denoted above by i

j
, will be

modelled by means of third-degree polynomials as follows:
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In particular, the current}voltage characteristics are odd functions and thus, the origin is
always an equilibrium point.

The present analysis starts by transforming equation (1) into an appropriate form. First,

the natural frequency of the oscillation is denoted by u"1/J¸C. The following
dimensionless variables are then introduced: x"v

1
, y"v

2
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/uC, and also time and
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The equations governing the electronic oscillator can then be written as

rx5 "!(l#b)x#by!A
3
x3#B

3
(y!x)3,

yR "bx!(b#c)y!z!B
3
(y!x)3!C

3
y3, zR"y. (3)

Note that the parameter r, which represents the ratio of the two capacitors, must always be
positive.

The equilibrium at the origin exhibits a diversity of local bifurcations. Among these,
a pitchfork bifurcation (see reference [3]) and also Hopf and Takens-Bogdanov bifurcations
(analyzed in reference [4]) can be found.
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3. REDUCTION TO NORMAL FORM

The present analysis will focus on the study of the Hopf}pitchfork bifurcation of the

origin, which occurs when the parameters satisfy l#b"0, b#c"0, DcD(Jr. The
eigenvalues of the linearization matrix at the origin are $iu

0
and 0, with u2

0
"(r!c2)/r.

As this bifurcation is of co-dimension two, l and b are taken as bifurcation parameters
and c (with c2(r) is kept "xed.

The normalization of this bifurcation problem has been carried out in reference [5]. In
that paper, it is shown that, by taking l+c, b+!c and changing the state variables and
the time, equation (3) can be reduced to the following third order normal form in cylindrical
co-ordinates:
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where

e
1
"

c2(1#r)!r2

2r(r!c2)
(b#c)#

c2
2r(r!c2)

(l!c),

e
2
"!

1

r!c2
(b#c)!

1

r!c2
(l!c),

a
11

"

3(c4(A
3
#B

3
)!(B

3
#C

3
)r2(r!c2)2)

8r3(r!c2)
,

a
12

"

3(c2(A
3
#B

3
)!rB

3
(r!c2))

2r(r!c2)
,

a
21

"

3(!c2(A
3
#B

3
)!rB

3
(r!c2))

2r2(r!c2)
,

a
22

"!

A
3
#B

3
r!c2

.

In the above expressions, the higher order terms in the parameters have been omitted.
Moreover, the expressions for b

1
, b

2
are not included for the sake of brevity.

The interaction of stationary and periodic bifurcations leads to interesting phenomena,
including quasiperiodic, homoclinic and heteroclinic behaviours (see, for instance, reference
[1]). The parameter values where these phenomena occur can be predicted once the normal
form (4) has been computed. The analysis is based on the rotational symmetry of the normal
form. This property allows the azimuthal component h to be uncoupled and reduces the
study to the bi-dimensional system of variables o, z. The two-dimensional #ow can be
viewed as approximating to a local PoincareH map of the full system when recovering the
azimuthal component, so that some of the information achieved can be easily translated to
the three-dimensional #ow.

Rotating about the z-axis, a correspondence between two- and three-dimensional #ows is
established. So, equilibria on the z-axis remain equilibria, whilst equilibria outside the z-axis
become periodic orbits and periodic solutions turn into invariant tori.

The inclusion of the rotation alone does not explain all the dynamics for systems without
rotational symmetry. To understand the dynamics in this case, it is necessary to consider the
terms that have been neglected in the truncated normal form (4). The symmetry-breaking
e!ect of these terms leads to new bifurcation phenomena related to the breakdown of the
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Figure 2. Top: projection onto the xy plane of the periodic orbit corresponding to the parameter values
l"!0)5998, b"0)29254. Bottom: temporal pro"le of the periodic orbit (x versus time along a period).

902 A. ALGABA
toroidal attractor generated in the secondary Hopf bifurcation of periodic orbits, and also
to the homoclinic and heteroclinic connections between equilibria and/or periodic orbits.
Moreover, chaotic behaviour is present.

For system (3), several of the above coe$cients have a de"nite sign, namely a
21

40 and
a
22

)0. However, di!erent non-linear degeneracies can appear when one of the following
equalities holds: a

11
"0, a

12
"0 and D"a

11
a
22

!a
12

a
21

"0 (even more intrincated
behaviour appears in these degenerate cases). Here, this last degenerate situation will be
considered. To obtain it, system (3) is analyzed with r"0)6, A

3
"0)5, B

3
"0)01 and

C
3
"!0)1. The degenerate case D"0 for the Hopf-pitchfork bifurcation takes place at

c+$0)2473. In the following, the negative critical value of c, c
c
+!0)2473, will be

considered.
The above analytical information is a useful starting point for the use of adequate

numerical tools. In all the numerical work presented here c will be "xed, as !0.24, close to
the critical value c

c
. The aim of this paper is to show some interesting oscillatory behaviour

by moving parameters l and b, which is achieved by acting on the linear part of the
conductances G

1
and G

2
, respectively.

First, "x b"0)29254. By moving l, it is possible to pass from oscillatory to quasiperiodic
motion. In Figure 2, a periodic orbit is shown, for l"!0)5998 (the program DSTOOL [6]
has been used for numerical simulation). This periodic orbit (called principal) undergoes
a secondary Hopf bifurcation, giving rise to the appearance of an invariant torus. One of
these invariant tori, which occurs for l"!0)5998952, is shown in Figure 3. Beyond the
projection onto the xy plane of the invariant torus, a PoincareH section (cutting o! with the
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Figure 3. Top: projection onto the xy plane of the invariant torus (quasiperiodic orbit) corresponding to the
parameter values l"!0)5998952, b"0)29254. Middle: PoincareH section of the invariant torus (represented by
the closed curve), surrounding the principal periodic orbit (represented by a triangle). Bottom: temporal pro"le of
the quasiperiodic orbit (x versus time).
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plane z"0) is included, with the periodic orbit represented by a triangle. The temporal
pro"le of the quasiperiodic behaviour (x versus time) is also shown.

Figure 4 shows the typical situation associated with the breakdown of the invariant torus
(l"!0)6), namely, the presence of resonance phenomena leading to phase-locked (also
called subharmonic) periodic orbits. In the "gure, a PoincareH section (in the plane z"0)
appears where the fractal shadow of the torus can be observed. Inside, a pair of 6T periodic
orbits, one elliptic and the other hyperbolic (represented by crosses), and the principal
periodic orbit (represented by the triangle) can be seen. Outside, a 7T periodic orbit appears.
The 6T elliptic periodic orbit is represented in Figure 5.
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Figure 4. Scenario after the breakdown of the invariant torus corresponding to the parameter values l"!0)6,
b"0)29254. In the PoincareH section, the fractal shadow of the torus can be observed. Outside, a 7T periodic orbit
(represented by crosses) can be seen. Inside, a pair of 6T periodic orbits (elliptic and hyperbolic, both represented
by crosses), and the principal periodic orbit (represented by the triangle) appear.
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Figure 5. Top: projection onto the xy plane of one 6T periodic orbit corresponding to the parameter values
l"!0)6, b"0)29254. Bottom: temporal pro"le of the 6T periodic orbit (x versus time along a period).
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The phenomena corresponding to strong resonance is now considered. A 3T periodic
orbit, which exists for the values l"!0)75, b"0)304825, is represented in Figure 6.
A PoincareH section in the plane z"0 of this periodic orbit is also shown (as above, the
triangle inside represents the principal periodic orbit).
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Figure 6. Top: Projection onto the xy plane of the 3T periodic orbit corresponding to the parameter values
l"!0)75, b"0)304825. Bottom: PoincareH section of the 3T periodic orbit. The triangle in the middle denotes the
principal periodic orbit.
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Numerical continuation (performed with the AUTO code [7]) of the 3T periodic orbit
provides evidence of a new phenomena. This periodic orbit still exists for the value
b"0)435 taking l3(!2)119680,!1)041162). As can be seen in Figure 7, the type of
oscillations is di!erent when the parameter l is moved.

At the end-points of the interval, the oscillations are of di!erent kinds: large oscillations
for l"!2)119680, and small oscillations for l"!1)041162. In the middle, the oscillations
link the large and the small ones, all the cases being of period 3T. In Figure 7, two of these
3T periodic orbits, corresponding to the values l"!2)045187 and l"!1)793874, have
also been included.

This phenomenon, referred to as oscillation-sliding (a 3T periodic orbit slides between
two di!erent oscillation reH gimes: a large- and a small-amplitude periodic orbit), is not only
present for these 3T periodic orbits but also for other phase-locked periodic orbits on the
invariant torus. This fact has been numerically corroborated for 4T, 5T, 6T, 7T,2 periodic
orbits.

4. CONCLUSIONS

The existence of this phenomenon of oscillation-sliding, that establishes a bridge linking
two di!erent periodic reH gimes, has been identi"ed, taking advantage of some analytical
results about a degenerate Hopf}pitchfork bifurcation.
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Figure 7. Evolution of the oscillation-sliding phenomenon. Left: projection of the periodic orbits onto the xy
plane. Right: x versus t along a normalized period. The values of the parameter l are (up}down):
l"!2)119680,!2)045187,!1)793874,!1)041162 respectively.
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In the parameter region where oscillation-sliding is present, other complex dynamical
behaviours also occur. Quasiperiodic oscillations (invariant torus), breakdown of the torus
and the corresponding resonant periodic orbits have been de"ned.

Some questions need to be addressed in the near future. In particular, a detailed
numerical analysis showing bifurcation diagrams and bifurcation sets of oscillation-sliding
periodic orbits will provide important information. Preliminary results (not included in the
present paper) suggest the possible relation of this phenomenon to some global bifurcations
(homoclinic/heteroclinic connections). A more ambitious and di$cult task will be to obtain
some analytical information on oscillation-sliding.
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